Mediterranean marine worm has developed eyes “as big as millstones"

April 09, 2024

The Vanadis bristle worm has eyes as big as millstones – relatively speaking. Facts: The Worm The Vanadis worm belongs to a family of large-eyed bristle worms, or polychaeta, found in many parts of the world. Vanadis bristle worms, also known as polychaetes, can be found around the Italian island of Ponza, just west of Naples. He was hooked as soon as his colleague Michael Bok at Lund University showed him a recording of the bristle worm. And it was this combination of factors about the Vanadis bristle worm that really caught Anders Garm's attention.

The Vanadis bristle worm has eyes as big as millstones – relatively speaking. Indeed, if our eyes were proportionally as big as the ones of this Mediterranean marine worm, we would need a big sturdy wheelbarrow and brawny arms to lug around the extra 100kg.

As a set, the worm's eyes weigh about twenty times as much as the rest of the animal’s head and seem grotesquely out of place on this tiny and transparent marine critter. As if two giant, shiny red balloons have been strapped to its body.

Facts: The Worm

The Vanadis worm belongs to a family of large-eyed bristle worms, or polychaeta, found in many parts of the world.

Its eyesight rivals that of rodents such as mice and rats. Vanadis' eyes weigh about 20 times more than the rest of its head

The worms can see UV light and focus on relatively small objects, tracking them as they move.

It is nocturnal. The researchers believe that these bristle worms use their eyes to communicate for mating and hunting prey.

Vanadis bristle worms, also known as polychaetes, can be found around the Italian island of Ponza, just west of Naples. Like some of the island's summertime partiers, the worms are nocturnal and out of sight when the sun is high in the sky. So what does this polychaete do with its walloping peepers after dark? And what are they good for?

Neuro- and marine biologist Anders Garm from the University of Copenhagen’s Department of Biology couldn’t ignore the question. Setting other plans aside, the researcher felt compelled to dive in and try to find out. He was hooked as soon as his colleague Michael Bok at Lund University showed him a recording of the bristle worm.

"Together, we set out to unravel the mystery of why a nearly invisible, transparent worm that feeds in the dead of night has evolved to acquire enormous eyes. As such, the first aim was to answer whether large eyes endow the worm with good vision," says Michael Bok who together with Anders Garm, authors a new research article that does just that.[LINK]

It turns out that the Vanadis’ eyesight is excellent and advanced. Research has demonstrated that this worm can use its eyes to see small objects and track their movements.

"It's really interesting because an ability like this is typically reserved for us vertebrates, along with arthropods (insects, spiders, etc.) and cephalopods (octopus, squid). This is the first time that such an advanced and detailed view has been demonstrated beyond these groups. In fact, our research has shown that the worm has outstanding vision. Its eyesight is on a par with that of mice or rats, despite being a relatively simple organism with a miniscule brain," says Garm.

This is what makes the worm's eyes and extraordinary vision unique in the animal kingdom. And it was this combination of factors about the Vanadis bristle worm that really caught Anders Garm's attention. The researcher’s work focuses on understanding how otherwise simple nervous systems can have very complex functions – which was definitely the case here.

UV light and a secret language

For now, the researchers are trying to find out what caused the worm to develop such good eyesight. The worms are transparent, except for their eyes, which need to register light to function. So they can't be inherently transparent. That means that they come with evolutionary trade-offs. As becoming visible must have come at a cost to the Vanadis, something about the evolutionarily benefits of its eyes must outweigh the consequences.

Photo: Michael Bok

Precisely what the worms gain remains unclear, particularly because they are nocturnal animals that tuck away during the day, when eyes usually work best.

Facts: Bioluminescence

Bioluminescence is when organisms are luminescent, i.e., capable of producing light using their own power. This can be done chemically within the body, as with glow-worms.

Should the researchers succeed in documenting it, the Vanadis worm could become the first animal proven to use UV bioluminescence, meaning that they create ultraviolet light naturally, for communication, among other things.

“No one has ever seen the worm during the day, so we don't know where it hides. So, we cannot rule out that its eyes are used during the day as well. What we do know is that its most important activities, like finding food and mating, occur at night. So, it is likely that this is when its eyes are important," says Anders Garm.

Part of the explanation may be due to the fact that these worms see different wavelengths of light than we humans do. Their vision is geared to ultraviolet light, invisible to the human eye. And according to Garm, this may indicate that the purpose of its eyes is to see bioluminescent signals in the otherwise pitch-black nighttime sea.

"We have a theory that the worms themselves are bioluminescent and communicate with each other via light. If you use normal blue or green light as bioluminescence, you also risk attracting predators. But if instead, the worm uses UV light, it will remain invisible to animals other than those of its own species. Therefore, our hypothesis is that they’ve developed sharp UV vision so as to have a secret language related to mating," says Garm, who continues:

"It may also be that they are on the lookout look for UV bioluminescent prey. But regardless, it makes things truly exciting as UV bioluminescence has yet to be witnessed in any other animal. So, we hope to be able to present this as the first example," says the researcher.

Exciting for robotics research and evolutionary history

As a result of the discovery, Anders Garm and his research colleagues have also started working with robotics researchers from the Maersk Mc-Kinney Møller Institute at the University of Southern Denmark (SDU) who find technological inspiration in biology. Together, they share a common goal of investigating whether it is possible to understand the mechanism behind these eyes well enough so as to translate it into technology.

"Together with the robotics researchers, we are working to understand how animals with brains as simple as these can process all of the information that such large eyes are likely able to collect. This suggests that there are super smart ways to process information in their nervous system. And if we can detect these mechanisms mathematically, they could be integrated into computer chips and used to control robots," explains Ander Garm.

According to Garm, Vanadis' eyes are also interesting with regards to evolutionary theory because they could help settle one of the heaviest academic debates surrounding the theory: Whether eyes have only evolved once – and evolved into every form that we know of today, or whether they have arisen several times, independently of one another, in evolutionary history.

Vanadis' eyes are built simply, but equipped with advanced functionality. At the same time, they have evolved in a relatively short evolutionarily time span of just a few million years. This means that they must have developed independently of, for example, human eyes, and that the development of vision, even with a high level of function, is possible in a relatively short time.

 

Extra Info: The eye and evolution

In general, eyes come in complex sizes, which is the case with the human eye, for example. Evolutionary skeptics have often pointed to the eye and said 'see for yourself, this must have been created by God'.

The eyes of the Vanadis worm have a surprisingly simple natural "design" that has evolved in a relatively short time span compared to typical evolutionary timelines – i.e., a few million years. Despite their simplicity, they are advanced.

The emergence of eyes has been the subject of many debates since Darwin presented his theory of evolution in Origin of Species, both among those who are religious and skeptics outside science, as well as among eye biology and vision researchers.

One of these debates has been about whether eyes have only evolved once – and into every form that we know today, or whether they have arisen several times, independently of one another, in evolutionary history. Research in recent years has provided a number of pieces of evidence to support the latter, and the eyes of the Vanadis worm are another powerful piece of evidence in that direction.

“This means that they must have developed independently of, for example, human eyes and that the development of vision, even with a high level of function, is possible in a relatively short time. Because, this worm is so young on an evolutionary scale," says Michael Bok.

Darwin and the eye

In Charles Darwin’s major work, On the Origin of Species, he wrote about the incredible nature of the eye in relation to his theory of evolution by natural selection. He is often quoted by evolutionary skeptics as saying:

“To suppose that the eye with all its inimitable contrivances for adjusting the focus to different distances, for admitting different amounts of light, and for the correction of spherical and chromatic aberration, could have been formed by natural selection, seems, I confess, absurd in the highest degree...”

But this quote forgets to add the end of the passage:

“Yet reason tells me, that if numerous gradations from a perfect and complex eye to one very imperfect and simple, each grade being useful to its possessor, can be shown to exist; if further, the eye does vary ever so slightly, and the variations be inherited, which is certainly the case; and if any variation or modification in the organ be ever useful to an animal under changing conditions of life, then the difficulty of believing that a perfect and complex eye could be formed by natural selection, though insuperable by our imagination, can hardly be considered real.” (Origin of Species, chap. 6)

 

The source of this news is from University of Copenhagen