Predicting earthquakes and tsunamis with fibre-optic networks

November 23, 2023

All that’s required is to store the active noise suppression data and evaluate it – no need for additional devices or expensive infrastructure. The difference between the two signals then indicates the interference to which the light signal was exposed on its way through the optical fibre. Just as with noise suppression in headphones, this interference can be cancelled out using an appropriate anti-signal. Deformations cause minimal frequency changesIn optical data transmission, the “noise” is caused when optical fibres are perturbed by mere micrometres. Both the changes in fibre length and the fluctuations in the speed of light change the frequency of the light signal by a tiny factor.

For wealthy countries like Switzerland, having a dense network of earthquake monitoring stations is a matter of course[AF1] . This is not the case in less developed countries and on the floor of the world’s oceans. While poorer regions lack the money for the necessary number of sensors, the oceans require complex systems that can reliably measure minimal pressure changes at depths of thousands of metres and bring the data signals to the surface.

Secondary use of noise suppression data

Scientists from the Institute of Geophysics at ETH Zurich, working together with the Swiss Federal Institute of Metrology (METAS), have now found an amazing and inexpensive method that enables accurate earthquake measurements even on the ocean floor and in less developed countries. “We’re taking advantage of a function that existing fibre-optic infrastructure already performs: we obtain the vibration data from the active noise suppression system, which has the job of increasing the accuracy of the signals in optical data communication,” explains geophysics professor Andreas Fichtner. All that’s required is to store the active noise suppression data and evaluate it – no need for additional devices or expensive infrastructure.

Vibration “noise” is extinguished

To understand how active phase noise cancellation (PNC) can measure seismic tremors, it helps to compare it with the noise suppression systems of today’s high-end headphones, which make the ambient noise almost completely disappear for users. These headphones feature microphones that pick up external noise. This signal is inverted and then fed into the audio signals practically in real time. The phase-inverted signal cancels out the external noise one-to-one, making it inaudible.

In the PNC of an optical data communication system, the “ambient noise” in the optical fibre is determined by comparing the originally transmitted signal with a partial signal that is reflected by the receiver. The difference between the two signals then indicates the interference to which the light signal was exposed on its way through the optical fibre. Just as with noise suppression in headphones, this interference can be cancelled out using an appropriate anti-signal.

Deformations cause minimal frequency changes

In optical data transmission, the “noise” is caused when optical fibres are perturbed by mere micrometres. This occurs in response to deformations of the Earth’s surface due to earthquakes, water waves, differences in air pressure and human activity. Each deformation shortens or lengthens the fibre slightly. This in turn leads to what is known as a photo-elastic effect, which causes the speed of light in the fibre to fluctuate ever so slightly.

Both the changes in fibre length and the fluctuations in the speed of light change the frequency of the light signal by a tiny factor. This phenomenon has been known for several years and has already been put to use in special instruments to measure vibrations.

The source of this news is from ETH Zurich