Invasive species threaten marine biodiversity

December 15, 2023

According to Professor Jens Kjerulf Petersen from DTU Aqua, there are many other invasive marine species in Denmark that are not continuously monitored. He has created a report in which he describes selected threats to Denmark’s marine and aquatic environment, including invasive species. “We don’t know much about the invasive marine species in this country. Their prevalence and harmful effects are an understudied area because we have no coordinated monitoring systems for invasive marine species. One of the concerns regarding offshore wind farms is that they might create a kind of corridor for invasive species.

Little knowledge about the damage

According to Jane Behrens, little is known about how much damage the round goby is causing to the Danish ecosystems.

“We’ve only done one study, which showed that the round goby can change the fauna in the areas where it establishes itself and multiplies. It does so by selectively feeding on its preferred foods such as small clams and snails as long as they’re present. This changes the composition of the benthic fauna, which then affects the rest of the fauna, because the other animals that also feed on benthic animals will have to find other food sources or feeding grounds. In Denmark, the round goby hasn’t been given much attention, so the data available is limited. We have to look to other countries such as the USA for more knowledge, and their studies show that the round goby has a negative effect on biodiversity, including when it comes to other species of fish. We have good reason to believe that the same is true for us,” says Jane Behrens.

According to Professor Jens Kjerulf Petersen from DTU Aqua, there are many other invasive marine species in Denmark that are not continuously monitored. He has created a report in which he describes selected threats to Denmark’s marine and aquatic environment, including invasive species.

“We don’t know much about the invasive marine species in this country. Their prevalence and harmful effects are an understudied area because we have no coordinated monitoring systems for invasive marine species. We get random recordings from citizens or our researchers. The knowledge we have mainly comes from singular studies of a single species through a couple of years. And when the project ends, so does the collection of data,” says Jens Kjerulf Petersen.

Underwater robot can acquire data

His colleagues at DTU Aqua, headed by Professor Einar Eg Nielsen, have a technological solution that can reduce the gaps in our knowledge of invasive marine species: an underwater robot that can identify species using DNA analyses. The robot has been given the name ESP (Environmental Sample Processor). The technique of collecting DNA from the environment is called eDNA or environmental DNA.

“The robot can operate in water and take samples of the water for up to three months before running out of battery. We can program it to identify up to five different species from the water samples. We can also control how often it takes water samples and whether the samples are taken close to the surface or at the bottom. With the robot, we can gain a wealth of information about the species we want to monitor, and we can do it day and night and any time of the year. This way, we can gather the information in a much cheaper way than the traditional method of going out on a boat and collecting water samples manually,” says Einar Eg Nielsen, who specializes in genetic methods for identifying biodiversity.

The ESP was developed in the USA, where it is used to measure algal blooms, among other things, but the Danish version was further developed by Einar Eg Nielsen’s colleagues at DTU Aqua a few years ago, so it can be used to detect DNA traces in the environment. The ESP is connected to the mobile network, so its mission can be changed remotely if necessary. This also enables it to continuously transmit data to the researchers.

Einar Eg Nielsen and his colleagues are currently planning a collaboration project with Iceland where the ESP will be used to monitor humpback salmon, an invasive species in the Icelandic streams. In addition, the researchers have a third-generation ESP ready for action in 2024. This version is even more advanced as it can move around and collect eDNA samples rather than remaining stationary. Next year, it will be involved in a project involving Ørsted and the Danish Environmental Protection Agency to map the biodiversity by the offshore wind farms at Horns Rev and Anholt in Denmark.

“We can provide the data that will enable us to track the development of biodiversity around the offshore wind turbines. However, we must first define what we want that biodiversity to look like, because it’s not necessarily a good thing if the biodiversity increases around the offshore wind farms. One of the concerns regarding offshore wind farms is that they might create a kind of corridor for invasive species. We will be able to help clarify this through the eDNA,” says Einar Eg Nielsen.

The source of this news is from Technical University of Denmark

Popular in Research

1

Feb 15, 2024

Fifth cohort of Hansen Scholars join the University of Melbourne

2

Feb 13, 2024

£11m semiconductor research centre could be key player in UK’s net zero mission

3

Feb 15, 2024

MIT community members elected to the National Academy of Engineering for 2024

4

5 days ago

Stitch3D is powering a new wave of 3D data collaboration

5

Feb 9, 2024

Engineers to develop robot maintenance crews in space

Roundup of Key Statements

Oct 14, 2023

New path facilitates campus access for students

Feb 2, 2023