Stefan Feuerriegel: “We give the machine rules for recognizing the causal structure and correctly formalizing the problem." | © LMU
Artificial intelligence is making progress in the medical arena. When it comes to imaging techniques and the calculation of health risks, there is a plethora of AI methods in development and testing phases. Wherever it is a matter of recognizing patterns in large data volumes, it is expected that machines will bring great benefit to humanity. Following the classical model, the AI compares information against learned examples, draws conclusions, and makes extrapolations.
Now an international team led by Professor Stefan Feuerriegel, Head of the Institute of Artificial Intelligence (AI) in Management at LMU, is exploring the potential of a comparatively new branch of AI for diagnostics and therapy. Can causal machine learning (ML) estimate treatment outcomes – and do so better than the ML methods generally used to date? Yes, says a landmark study by the group, which has been published in the prestigious journal Nature Medicine: causal ML can improve the effectiveness and safety of treatments.
In particular, the new machine learning variant offers “an abundance of opportunities for personalizing treatment strategies and thus individually improving the health of patients,” write the researchers, who hail from Munich, Cambridge (United Kingdom), and Boston (United States) and include Stefan Bauer and Niki Kilbertus, professors of computer science at the Technical University of Munich (TUM) and group leaders at Helmholtz AI.
As regards machine assistance in therapy decisions, the authors anticipate a decisive leap forward in quality. Classical ML recognizes patterns and discovers correlations, they argue. However, the causal principle of cause and effect remains closed to machines as a rule; they cannot address the question of why. And yet many questions that arise when making therapy decisions contain causal problems within them. The authors illustrate this with the example of diabetes: Classical ML would aim to predict how probable a disease is for a given patient with a range of risk factors. With causal ML, it would ideally be possible to answer how the risk changes if the patient gets an anti-diabetes drug; that is, gauge the effect of a cause (prescription of medication). It would also be possible to estimate whether another treatment plan would be better, for example, than the commonly prescribed medication, metformin.