Agricultural robots can help improve biodiversity

November 28, 2023

20,000 deer fawns are killed by agricultural machines every year, according to Denmark's Hunters' Association). As agricultural robots tend to be significantly smaller than traditional agricultural machines, they can be adapted to a smaller area without sacrificing efficiency. In the long term, the robots can help change the entire landscape. He acknowledges that robots are only a small part of the solution to the biodiversity crisis – and there will still be a need for large agricultural machines – but he hopes that robots can help make changes in parts of the world where industrial agriculture has not yet gained traction. "Some experience limitations with current agricultural machines when they wish to practice co-cultivation, so it’s really exciting to see what the robots can contribute.

 

More biological cameras

Today, robots and self-driving machines mainly use cameras and Lidar, a laser technology that can measure distances, but the SAVA project will also test infrared cameras and thermal cameras that can better detect animals and people in the surroundings.

In addition, the project will test so-called neuromorphic cameras (also known as event-based cameras), which function more like our eyes and only register when something changes in the image, rather than constantly registering everything in the image. Whereas the best DSLR cameras can capture around 120 frames per second, a neuromorphic camera can take up to 1,000,000 frames per second. Lazaros Nalpantidis hopes that this kind of technology can help the robots react significantly faster to unforeseen obstacles and come to a stop if, for instance, an animal or a person suddenly runs in front of them (in Denmark, approx. 20,000 deer fawns are killed by agricultural machines every year, according to Denmark's Hunters' Association).

Agricultural paradigm shift

Robots can fundamentally change the appearance of our fields. As agricultural robots tend to be significantly smaller than traditional agricultural machines, they can be adapted to a smaller area without sacrificing efficiency.

This means that you can plant narrow strips of several different crops next to each other, as the robots can sow, water, spray, and harvest in a narrow area.

Studies show that if you grow several different crops in an area, it’s better for biodiversity, as it provides habitats for more species, while there is less need for fertilizing and spraying with pesticides. If a crop is affected by pests or disease, it is limited to a single strip rather than an entire field.

In the long term, the robots can help change the entire landscape. In many places, the fields are moulded to the needs of large agricultural machines – streams are straightened out, low-lying areas drained, and hills leveled – but small robots will be able to follow nature’s shapes to a greater extent. Thus, more habitats for animals and plants can be preserved.

Robots within ten years

To get to that vision, the robots must first prove that they can operate safely and autonomously and not be of danger to their surroundings.

"Unfortunately, the robotic technology is not quite mature enough yet," says Lazaros Nalpantidis.

He acknowledges that robots are only a small part of the solution to the biodiversity crisis – and there will still be a need for large agricultural machines – but he hopes that robots can help make changes in parts of the world where industrial agriculture has not yet gained traction.

Ane Kirstine Aare also sees potential in robots.

"Some experience limitations with current agricultural machines when they wish to practice co-cultivation, so it’s really exciting to see what the robots can contribute. If robots are developed thoughtfully they may pave the way for a different kind of agriculture with more flexibility and local adaptation," she says.

To Lazaros Nalpantidis, his vision of robots chugging around in the fields might become reality within ten years.

"I am quite optimistic because there is momentum in this area and it is clear that we cannot continue with the current agricultural production. It’s just not sustainable," says Lazaros Nalpantidis.

"But in ten years’ time, we’ll have far more futuristic machines in agriculture."

 

The source of this news is from Technical University of Denmark

Popular in Research

1

Feb 15, 2024

Fifth cohort of Hansen Scholars join the University of Melbourne

2

Feb 5, 2024

New Prostate Cancer Report Card keeps treatment options simple to understand

3

Feb 5, 2024

Innovative urban living concept tackles housing woes and offers socially connected solutions

4

Feb 6, 2024

New study aims to ease chronic pain for people with Parkinson’s

5

Feb 7, 2024

Effort to cure corneal blindness globally welcomes $35 million support

Roundup of Key Statements

Oct 14, 2023

New path facilitates campus access for students

Feb 2, 2023