Increased knowledge about human cells
Kirstine Berg-Sørensen also uses quantum technology for biological sensors, but with smaller diamonds. Her focus is on obtaining greater knowledge of our cells.
“In recent years, cell biology researchers have discovered that cells are not as heterogeneous as we thought. The individual cells develop differently, even though they come from the same starting point. This applies, for example, to cancer cells, but also to immune cells, which is my focus area. It’s important to gain more in-depth knowledge about which cells are responsible for disease development and disease control, respectively,” says Kirstine Berg-Sørensen, Associate Professor at DTU Health Tech.
Kirstine Berg-Sørensen has worked with optical traps in the laboratory throughout most of her career. In this work, a highly focused laser beam of infrared light is used to examine the biological material. In this way, the light does not heat up the material and thus does not create changes in connection with the analyses.
“About six years ago, through Alexander Huck’s work, I became aware of nanodiamonds, which make it possible to register weak magnetic fields, for example in human tissue. This gave me the idea to study cells by combining our methods, and we’re now collaborating on this,” says Kirstine Berg-Sørensen.
Combining two methods
The cells first absorb tiny nanodiamonds that have a diameter of about 120 nanometres—500 times smaller than the thickness of a human hair. The researchers use laser light to read what the diamond measures.
In the long term, the goal is to develop an advanced measuring tool for biological material based on the two methods. The advantage of both diamonds and optical trap is that they are biocompatible, which means that they do not interact with the biological material and thus do not ‘disturb’ anything in connection with the measurement. In addition, their magnetic sensitivity can function at room temperature, and therefore does not require extremely low temperatures below minus 150 degrees, unlike other types of quantum sensors.
“We’ve already shown that we can get the cells to absorb the nanodiamonds. Now we need to refine our method to get optical tweezers, a laser beam, to ‘push’ the diamond around in the cell, so that we can measure several parts of the cell. We’re currently working on this,” says Kirstine Berg-Sørensen.