Biodiversity protects against invasions of non-native tree species

August 24, 2023

In diverse forests, when most of the available niches are filled by native species, it becomes harder for non-native tree species to spread and proliferate. In harsh regions with extreme cold or dry conditions, the researchers found that non-native tree species must be functionally similar to native species to survive in these harsh environments. However, in locations with moderate conditions, non-native trees must be functionally dissimilar to native species in order to survive by functionally differentiating themselves, the non-native species avoid intense competition with native trees for important resources such as space, light, nutrients, or water. Native biodiversity is a strong defenceOverall, the study highlights the importance of native tree diversity in helping to limit the severity of these invasions. “We found that native biodiversity can limit the severity or intensity of non-native tree species invasions worldwide,” says Camille Delavaux, lead author of the study.

Ecological factors determine severity

The study reveals that proximity to human activity – especially maritime ports – emerges as a dominant factor driving the likelihood of invasion. Ports handle tonnes of goods including plants or seeds from all corners of the globe. The colonization pressure exerted by plant material is, therefore, very high in these regions of high human activity. The closer a forest is to a port, the higher the risk of invasion.

However, ecological factors determine the severity of invasion. Most importantly, native biodiversity helps to buffer the intensity of these invasions. In diverse forests, when most of the available niches are filled by native species, it becomes harder for non-native tree species to spread and proliferate.

The ecological strategy of the invading species is also important in determining which types of trees can invade in different regions. In harsh regions with extreme cold or dry conditions, the researchers found that non-native tree species must be functionally similar to native species to survive in these harsh environments. However, in locations with moderate conditions, non-native trees must be functionally dissimilar to native species in order to survive by functionally differentiating themselves, the non-native species avoid intense competition with native trees for important resources such as space, light, nutrients, or water.

Native biodiversity is a strong defence

Overall, the study highlights the importance of native tree diversity in helping to limit the severity of these invasions. “We found that native biodiversity can limit the severity or intensity of non-native tree species invasions worldwide,” says Camille Delavaux, lead author of the study. “This means that the extent of invasion can be mitigated by promoting greater native tree diversity.”

The findings have direct relevance for efforts to manage ecosystems in the fight against biodiversity loss across the globe. “By identifying regions that are most vulnerable to invasion, this analysis is useful for designing effective strategies to protect global biodiversity,” says ETH Zurich professor, Thomas Crowther. A large consortium of researchers took part in the study and collected valuable data. “Without the incredible cooperation of scientists around the world, this global perspective would not have been possible.”

The source of this news is from ETH Zurich

Popular in Research

1

Sep 11, 2023

DTU and the PF student association to collaborate on new study start

2

Sep 14, 2023

Internships fabricate a microelectronics future

3

Sep 14, 2023

Smart pill can track key biological markers in real-time

4

Sep 14, 2023

Many people have biased perceptions of EDI leaders: study

5

Sep 14, 2023

UNSW Professor Megan Davis named on the 2023 TIME100 Next List

New path facilitates campus access for students

Feb 2, 2023

Australians under increasing financial stress

Jan 2, 2023